SRADGalaxySettings Structure

Structure defining the parameter in SRADGalaxySettings

C/C++ Declare

typedef struct __declspec (align(2))
{
  OP_ETH_GENERAL_SETTINGS opEthGen;
  OP_ETH_SETTINGS opEth1;
  OP_ETH_SETTINGS opEth2;
  OP_ETH_SETTINGS opEth3;
  OP_ETH_SETTINGS opEth4;
  OP_ETH_SETTINGS opEth5;
  OP_ETH_SETTINGS opEth6;
  OP_ETH_SETTINGS opEth7;
  OP_ETH_SETTINGS opEth8;
  OP_ETH_SETTINGS opEth9;
  OP_ETH_SETTINGS opEth10;
  OP_ETH_SETTINGS opEth11;
  OP_ETH_SETTINGS opEth12;
  CAN_SETTINGS can1;
  CANFD_SETTINGS canfd1;
  CAN_SETTINGS can2;
  CANFD_SETTINGS canfd2;
  CAN_SETTINGS can3;
  CANFD_SETTINGS canfd3;
  CAN_SETTINGS can4;
  CANFD_SETTINGS canfd4;
  CAN_SETTINGS can5;
  CANFD_SETTINGS canfd5;
  CAN_SETTINGS can6;
  CANFD_SETTINGS canfd6;
  CAN_SETTINGS can7;
  CANFD_SETTINGS canfd7;
  CAN_SETTINGS can8;
  CANFD_SETTINGS canfd8;
  SWCAN_SETTINGS swcan1;
  unsigned short network_enables;
  SWCAN_SETTINGS swcan2;
  unsigned short network_enables_2;
  LIN_SETTINGS lin1;
  unsigned short misc_io_initial_ddr;
  unsigned short misc_io_initial_latch;
  unsigned short misc_io_report_period;
  unsigned short misc_io_on_report_events;
  unsigned short misc_io_analog_enable;
  unsigned short ain_sample_period;
  unsigned short ain_threshold;
  unsigned int pwr_man_timeout;
  unsigned short pwr_man_enable;
  unsigned short network_enabled_on_boot;
  unsigned short iso15765_separation_time_offset;
  unsigned short iso_9141_kwp_enable_reserved;
  ISO9141_KEYWORD2000_SETTINGS iso9141_kwp_settings_1;
  unsigned short iso_parity_1;
  unsigned short iso_msg_termination_1;
  unsigned short idle_wakeup_network_enables_1;
  unsigned short idle_wakeup_network_enables_2;
  unsigned short network_enables_3;
  unsigned short idle_wakeup_network_enables_3;
  unsigned short can_switch_mode;
  STextAPISettings text_api;
  TIMESYNC_ICSHARDWARE_SETTINGS timeSyncSettings;
  unsigned short hwComLatencyTestEn;
} SRADGalaxySettings;

Visual Basic .NET Declare

<StructLayout(LayoutKind.Sequential, Pack:=2)> Public Structure SRADGalaxySettings
  Dim opEthGen As OP_ETH_GENERAL_SETTINGS
  Dim opEth1 As OP_ETH_SETTINGS
  Dim opEth2 As OP_ETH_SETTINGS
  Dim opEth3 As OP_ETH_SETTINGS
  Dim opEth4 As OP_ETH_SETTINGS
  Dim opEth5 As OP_ETH_SETTINGS
  Dim opEth6 As OP_ETH_SETTINGS
  Dim opEth7 As OP_ETH_SETTINGS
  Dim opEth8 As OP_ETH_SETTINGS
  Dim opEth9 As OP_ETH_SETTINGS
  Dim opEth10 As OP_ETH_SETTINGS
  Dim opEth11 As OP_ETH_SETTINGS
  Dim opEth12 As OP_ETH_SETTINGS
  Dim can1 As CAN_SETTINGS
  Dim canfd1 As CANFD_SETTINGS
  Dim can2 As CAN_SETTINGS
  Dim canfd2 As CANFD_SETTINGS
  Dim can3 As CAN_SETTINGS
  Dim canfd3 As CANFD_SETTINGS
  Dim can4 As CAN_SETTINGS
  Dim canfd4 As CANFD_SETTINGS
  Dim can5 As CAN_SETTINGS
  Dim canfd5 As CANFD_SETTINGS
  Dim can6 As CAN_SETTINGS
  Dim canfd6 As CANFD_SETTINGS
  Dim can7 As CAN_SETTINGS
  Dim canfd7 As CANFD_SETTINGS
  Dim can8 As CAN_SETTINGS
  Dim canfd8 As CANFD_SETTINGS
  Dim swcan1 As SWCAN_SETTINGS
  Dim network_enables As UInt16
  Dim swcan2 As SWCAN_SETTINGS
  Dim network_enables_2 As UInt16
  Dim lin1 As LIN_SETTINGS
  Dim misc_io_initial_ddr As UInt16
  Dim misc_io_initial_latch As UInt16
  Dim misc_io_report_period As UInt16
  Dim misc_io_on_report_events As UInt16
  Dim misc_io_analog_enable As UInt16
  Dim ain_sample_period As UInt16
  Dim ain_threshold As UInt16
  Dim pwr_man_timeout As UInt32
  Dim pwr_man_enable As UInt16
  Dim network_enabled_on_boot As UInt16
  Dim iso15765_separation_time_offset As UInt16
  Dim iso_9141_kwp_enable_reserved As UInt16
  Dim iso9141_kwp_settings_1 As ISO9141_KEYWORD2000_SETTINGS
  Dim iso_parity_1 As UInt16
  Dim iso_msg_termination_1 As UInt16
  Dim idle_wakeup_network_enables_1 As UInt16
  Dim idle_wakeup_network_enables_2 As UInt16
  Dim network_enables_3 As UInt16
  Dim idle_wakeup_network_enables_3 As UInt16
  Dim can_switch_mode As UInt16
  Dim text_api As STextAPISettings
  Dim timeSyncSettings As TIMESYNC_ICSHARDWARE_SETTINGS
  Dim hwComLatencyTestEn As UInt16
End Structure

C# .NET Declare

[StructLayout(LayoutKind.Sequential,Pack=2)]
public struct SRADGalaxySettings
{
  public OP_ETH_GENERAL_SETTINGS opEthGen;
  public OP_ETH_SETTINGS opEth1;
  public OP_ETH_SETTINGS opEth2;
  public OP_ETH_SETTINGS opEth3;
  public OP_ETH_SETTINGS opEth4;
  public OP_ETH_SETTINGS opEth5;
  public OP_ETH_SETTINGS opEth6;
  public OP_ETH_SETTINGS opEth7;
  public OP_ETH_SETTINGS opEth8;
  public OP_ETH_SETTINGS opEth9;
  public OP_ETH_SETTINGS opEth10;
  public OP_ETH_SETTINGS opEth11;
  public OP_ETH_SETTINGS opEth12;
  public CAN_SETTINGS can1;
  public CANFD_SETTINGS canfd1;
  public CAN_SETTINGS can2;
  public CANFD_SETTINGS canfd2;
  public CAN_SETTINGS can3;
  public CANFD_SETTINGS canfd3;
  public CAN_SETTINGS can4;
  public CANFD_SETTINGS canfd4;
  public CAN_SETTINGS can5;
  public CANFD_SETTINGS canfd5;
  public CAN_SETTINGS can6;
  public CANFD_SETTINGS canfd6;
  public CAN_SETTINGS can7;
  public CANFD_SETTINGS canfd7;
  public CAN_SETTINGS can8;
  public CANFD_SETTINGS canfd8;
  public SWCAN_SETTINGS swcan1;
  public UInt16 network_enables;
  public SWCAN_SETTINGS swcan2;
  public UInt16 network_enables_2;
  public LIN_SETTINGS lin1;
  public UInt16 misc_io_initial_ddr;
  public UInt16 misc_io_initial_latch;
  public UInt16 misc_io_report_period;
  public UInt16 misc_io_on_report_events;
  public UInt16 misc_io_analog_enable;
  public UInt16 ain_sample_period;
  public UInt16 ain_threshold;
  public UInt32 pwr_man_timeout;
  public UInt16 pwr_man_enable;;
  public UInt16 network_enabled_on_boot;
  public UInt16 iso15765_separation_time_offset;
  public UInt16 iso_9141_kwp_enable_reserved;
  public ISO9141_KEYWORD2000_SETTINGS iso9141_kwp_settings_1;
  public UInt16 iso_parity_1;
  public UInt16 iso_msg_termination_1;
  public UInt16 idle_wakeup_network_enables_1;
  public UInt16 idle_wakeup_network_enables_2;
  public UInt16 network_enables_3;
  public UInt16 idle_wakeup_network_enables_3;
  public UInt16 can_switch_mode;
  public STextAPISettings text_api;
  public TIMESYNC_ICSHARDWARE_SETTINGS timeSyncSettings;
  public UInt16 hwComLatencyTestEn;
}

Remarks

Item

Description

opEthGen

See OP_ETH_GENERAL_SETTINGS structure

opEth1

See OP_ETH_SETTINGS structure

opEth2

See OP_ETH_SETTINGS structure

opEth3

See OP_ETH_SETTINGS structure

opEth4

See OP_ETH_SETTINGS structure

opEth5

See OP_ETH_SETTINGS structure

opEth6

See OP_ETH_SETTINGS structure

opEth7

See OP_ETH_SETTINGS structure

opEth8

See OP_ETH_SETTINGS structure

opEth9

See OP_ETH_SETTINGS structure

opEth10

See OP_ETH_SETTINGS structure

opEth11

See OP_ETH_SETTINGS structure

opEth12

See OP_ETH_SETTINGS structure

can1

See CAN_SETTINGS structure

canfd1

See CANFD_SETTINGS structure

can2

See CAN_SETTINGS structure

canfd2

See CANFD_SETTINGS structure

can3

See CAN_SETTINGS structure

canfd3

See CANFD_SETTINGS structure

can4

See CAN_SETTINGS structure

canfd4

See CANFD_SETTINGS structure

can5

See CAN_SETTINGS structure

canfd5

See CANFD_SETTINGS structure

can6

See CAN_SETTINGS structure

canfd6

See CANFD_SETTINGS structure

can7

See CAN_SETTINGS structure

canfd7

See CANFD_SETTINGS structure

can8

See CAN_SETTINGS structure

canfd8

See CANFD_SETTINGS structure

swcan1

See SWCAN_SETTINGS structure

network_enables

Bitfield containing the software license enables. Depending on the hardware license purchased the customer may have to conditionally select which hardware channels to enable. For example the neoVI Red license allows the user to enable any 2 Dual Wire CAN channels and any 2 LIN channels. To enable a specific network its corresponding bit must be set (1). In order to transmit or receive on a network it must be enabled.

HSCAN : 0

MSCAN : 1

LIN1 : 2

LIN2 : 3

VIRTUAL : 4

HSCAN2 : 5

LSFTCAN1 : 6

SWCAN1 : 7

HSCAN3 : 8

GMCGI : 9

J1850 : 10

LIN3 : 11

LIN4 : 12

J1708 : 13

HSCAN4 : 14

HSCAN5 : 15

swcan2

See SWCAN_SETTINGS structure

network_enables_2

Bitfield containing the software license enables. Depending on the hardware license purchased the customer may have to conditionally select which hardware channels to enable. For example the neoVI Red license allows the user to enable any 2 Dual Wire CAN channels and any 2 LIN channels. To enable a specific network its corresponding bit must be set (1). In order to transmit or receive on a network it must be enabled.

KLINE1 : 0

KLINE2 : 1

KLINE3 : 2

KLINE4 : 3

FLEXRAY1A : 4

UART: 5

UART2 : 6

LIN5 : 7

MOST25 : 8

MOST50 : 9

FLEXRAY1B : 10

SWCAN2 : 11

ETHERNET_DAQ : 12

ETHERNET : 13

FLEXRAY2A : 14

FLEXRAY2B : 15

lin1

See LIN_SETTINGS structure

misc_io_initial_ddr

MISC IO Initial Data Direction Register. Controls the initial data direction of the tri-states on all misc digital pins. Each bit corresponds to an individual misc pin. Bit value of 0 signifies an input and bit value 1 signifies and output. Bit values corresponding to non existent pins (EX MISC7-MISC15 on FIRE) have no effect.

Default value = 0

Examples:

Set MISC1 to be output, all else input: misc_io_initial_ddr = 1

Set MISC1and MISC2 to be output, all else input: misc_io_initial_ddr = 3 (11 binary)

Set all MISC pins to output: misc_io_initial_ddr = 65535 (1111111111111111 binary)

misc_io_initial_latch

MISC IO Initial Latch Register. Controls the initial output latch value on all misc digital pins. Each bit corresponds to an individual misc pin. Bit value of 0 signifies an low voltage and bit value 1 signifies high voltage. Bit values corresponding to non existent pins (EX MISC7-MISC15 on FIRE) have no effect.

Default value = 0

Examples:

Set MISC1 to be high, all else low: misc_io_initial_latch = 1

Set MISC1and MISC2 to be high, all else low: misc_io_initial_latch = 3 (11 binary)

Set all MISC pins to high: misc_io_initial_latch = 65535 (1111111111111111 binary)

Note: In order for digital outputs to work correctly the corresponding bit in misc_io_initial_ddr must be set to output and corresponding bit in misc_io_analog_enable must be cleared.

misc_io_report_period

Period in milliseconds of device report message holding digital and analog data.

Default value = 100

Note: Periodic reporting requires misc_io_on_report_events[0] to be set.

misc_io_on_report_events

Bitfield holding enables for various report triggers for the General IO report. Default value = 0 Bit field values:

REPORT_ON_PERIODIC : 0

REPORT_ON_MISC1 : 1

REPORT_ON_MISC2 : 2

REPORT_ON_MISC3 : 3

REPORT_ON_MISC4 : 4

REPORT_ON_MISC5 : 5

REPORT_ON_MISC6 : 6

REPORT_ON_LED1 : 7

REPORT_ON_LED2 : 8

REPORT_ON_KLINE : 9

REPORT_ON_MISC3_AIN : 10

REPORT_ON_MISC4_AIN : 11

REPORT_ON_MISC5_AIN : 12

REPORT_ON_MISC6_AIN : 13

misc_io_analog_enable

MISC IO Initial Latch Register. Controls the initial output latch value on all misc digital pins. Each bit corresponds to an individual misc pin. Bit value of 0 signifies an low voltage and bit value 1 signifies high voltage. Bit values corresponding to non existent pins (EX MISC7-MISC15 on FIRE) have no effect.

Default value = 0

Examples:

Set MISC1 to be high, all else low: misc_io_initial_latch = 1

Set MISC1and MISC2 to be high, all else low: misc_io_initial_latch = 3 (11 binary)

Set all MISC pins to high: misc_io_initial_latch = 65535 (1111111111111111 binary)

Note: In order for digital outputs to work correctly the corresponding bit in misc_io_initial_ddr must be set to output and corresponding bit in misc_io_analog_enable must be cleared.

ain_sample_period

Controls how long the Analog to Digital Converter samples before preforming a convert in milliseconds. If it is set to zero the hardware will perform the conversion immediately after sampling. This option defaults to 0 but is accessible so that high impedance analog sources can still be used by manually increasing the sample period.

Default value = 0

ain_threshold

Percent of full voltage change required to trigger a REPORT_ON_MISCX_AIN event. Valid range is 0-100.

Default value = 0

Examples:

Report fires every time ADC value changes: ain_threshold = 0

Report fires every time ADC value changes by 400 mV: ain_threshold = 1

Report fires every time ADC value changes by 800 mV: ain_threshold = 2

Report fires every time ADC value changes by 40 V (Unpractical): ain_threshold = 100

Note: Periodic reporting requires proper misc_io_on_report_events bit to be set.

pwr_man_timeout

Number of milliseconds of no bus activity required before neoVI enters low power mode. Note pwr_man_enable must be set for power management to be enabled.

Default value = 10000

pwr_man_enable

1 = enable Power Management, 0 = disable.

Default value = 0

network_enabled_on_boot

Normally neoVI only initiates its comm channels when CoreMini is running or if neoVI is online with DLL/Vehicle Spy 3. Practically this means the the CAN controllers stay in Listen Only mode until the device goes online. Once online the neoVI loads the user settings. Setting this parameter to 1 will change this behavior so that the neoVI enables its controllers immediately on boot.

Default value = 0

iso15765_separation_time_offset

In an ISO15765-2 Transmission, the receiver transmits a flow control message that informs that transmitter how much time there should be between individual CAN messages. This parameter allows the user to shift that spacing to make it smaller or larger. Valid range is -1563 to 1563 units where each unit represents 6.4us. Defaults to 0. If IFS plus the offset is negative than the Tx Messages will be back to back.

Default value = 0

Examples:

ISO15765-2 Tx Message Inner frame spacing is exactly what is specified in flow control message: iso15765_separation_time_offset = 0

ISO15765-2 Tx Message Inner frame spacing is what’s specified in flow control message.+ 998.4 us: iso15765_separation_time_offset = 156

ISO15765-2 Tx Message Inner frame spacing is what’s specified in flow control message.- 998.4 us: iso15765_separation_time_offset = -156

iso_9141_kwp_enable_reserved

ISO9141 Parity setting: 0 - no parity, 1 - even, 2 - odd

iso9141_kwp_settings_1

See ISO9141_KEYWORD2000_SETTINGS structure

iso_parity_1

ISO9141 Parity setting: 0 - no parity, 1 - even, 2 - odd

iso_msg_termination_1

Not Available

idle_wakeup_network_enables_1

Bitfield containing list of hardware networks to look at for sleep enable. To enable a specific network its corresponding bit must be set (1). In order to transmit or receive on a network it must be enabled.

HSCAN : 0

MSCAN : 1

LIN1 : 2

LIN2 : 3

VIRTUAL : 4

HSCAN2 : 5

LSFTCAN1 : 6

SWCAN1 : 7

HSCAN3 : 8

GMCGI : 9

J1850 : 10

LIN3 : 11

LIN4 : 12

J1708 : 13

HSCAN4 : 14

HSCAN5 : 15

idle_wakeup_network_enables_2

Bitfield containing list of hardware networks to look at for sleep enable. To enable a specific network its corresponding bit must be set (1). In order to transmit or receive on a network it must be enabled.

KLINE1 : 0

KLINE2 : 1

KLINE3 : 2

KLINE4 : 3

FLEXRAY1A : 4

UART: 5

UART2 : 6

LIN5 : 7

MOST25 : 8

MOST50 : 9

FLEXRAY1B : 10

SWCAN2 : 11

ETHERNET_DAQ : 12

ETHERNET : 13

FLEXRAY2A : 14

FLEXRAY2B : 15

network_enables_3

Bitfield containing the software license enables. Depending on the hardware license purchased the customer may have to conditionally select which hardware channels to enable. For example the neoVI Red license allows the user to enable any 2 Dual Wire CAN channels and any 2 LIN channels. To enable a specific network its corresponding bit must be set (1). In order to transmit or receive on a network it must be enabled.

HSCAN6 : 0

HSCAN7 : 1

LIN6 : 2

LSFTCAN2 : 3

OP_ETH1: 4

OP_ETH2 : 5

OP_ETH3 : 6

OP_ETH4 : 7

OP_ETH5 : 8

OP_ETH6 : 9

OP_ETH7 : 10

OP_ETH8 : 11

OP_ETH9 : 12

OP_ETH10 : 13

OP_ETH11: 14

OP_ETH12: 15

idle_wakeup_network_enables_3

Not Available

can_switch_mode

Not Available

text_api

See STextAPISettings structure

timeSyncSettings

See TIMESYNC_ICSHARDWARE_SETTINGS structure

hwComLatencyTestEn

Not Available