
Instruction for installing and using the icsneoAPI
shared library for Linux
 Install the libFTDI shared library, version 0.18. This is an open

source FTDI driver that sits above libusb. You can either
download and install the compiled library using the software center
on your Linux installation, or download and build it from here:

http://www.intra2net.com/en/developer/libftdi/download.php

 *** Note: you will need to have root access to perform the following
actions ***
 Copy the shared library to /usr/local/lib:

 cp libicsneoAPI.so.0.1.3 /usr/local/lib

 Change directory to /usr/lib:

 cd /usr/lib

 Make a symbolic link to the shared library:

 ln -s /usr/local/lib/libicsneoAPI.so.0.1.3 libicsneoAPI.so

 Setting USB Device permissions

 Most systems will require a change to the permissions on USB devices
for your
applications to access the ports. This version of the icsneoAPI for Linux
was developed using Ubuntu Linux, version 10.4.1,
Linux kernel version 2.6.32-24-generic.

Your system should have a similar configuration for changing the
permissions on the USB ports:

- I had to modify the following file:

/lib/udev/rules.d/50-udev-default.rule (you will need to have root access
1

http://www.intra2net.com/en/developer/libftdi/download.php

to modify this file)

- Find the entry:

libusb devices nodes
SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device",
MODE="0664"

- Change the "0664" to "0666".

Using the icsneoAPI Shared Library to Write
Applications
 The file icsneoLinuxAPI.h contains prototypes for the icsneoAPI

functions supported. The LinuxAPIHelp.pdf
describes each of the API functions.

 A sample C++ project (GeneralTestProject) is provided inside the
tar file. It was a created using the codelite v2.5.2.4031.
It shows basic functionality for using a neoVI device and the API.

 Your project will need to include the following files. They can be
found in the directory "Include_files" in the tar file:

 - icsneoLinuxAPI.h

 - icsnVC40.h

- icsSpyData.h

- icsSpyDataCommon.h

- icsSpyDataCStyle.h
 Your project will need link the following libraries:

- rt (run-time library for Linux)

- icsneoAPI (symbolic link should be located at
/usr/lib/libicsneoAPI.so)

2

3

Instruction for installing and using the icsneoAPI
shared library for Linux
 Install the libFTDI shared library, version 0.18. This is an open

source FTDI driver that sits above libusb. You can either
download and install the compiled library using the software center
on your Linux installation, or download and build it from here:

http://www.intra2net.com/en/developer/libftdi/download.php

 *** Note: you will need to have root access to perform the following
actions ***
 Copy the shared library to /usr/local/lib:

 cp libicsneoAPI.so.0.1.3 /usr/local/lib

 Change directory to /usr/lib:

 cd /usr/lib

 Make a symbolic link to the shared library:

 ln -s /usr/local/lib/libicsneoAPI.so.0.1.3 libicsneoAPI.so

 Setting USB Device permissions

 Most systems will require a change to the permissions on USB devices
for your
applications to access the ports. This version of the icsneoAPI for Linux
was developed using Ubuntu Linux, version 10.4.1,
Linux kernel version 2.6.32-24-generic.

Your system should have a similar configuration for changing the
permissions on the USB ports:

- I had to modify the following file:

/lib/udev/rules.d/50-udev-default.rule (you will need to have root access
4

http://www.intra2net.com/en/developer/libftdi/download.php

to modify this file)

- Find the entry:

libusb devices nodes
SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_device",
MODE="0664"

- Change the "0664" to "0666".

Using the icsneoAPI Shared Library to Write
Applications
 The file icsneoLinuxAPI.h contains prototypes for the icsneoAPI

functions supported. The LinuxAPIHelp.pdf
describes each of the API functions.

 A sample C++ project (GeneralTestProject) is provided inside the
tar file. It was a created using the codelite v2.5.2.4031.
It shows basic functionality for using a neoVI device and the API.

 Your project will need to include the following files. They can be
found in the directory "Include_files" in the tar file:

 - icsneoLinuxAPI.h

 - icsnVC40.h

- icsSpyData.h

- icsSpyDataCommon.h

- icsSpyDataCStyle.h
 Your project will need link the following libraries:

- rt (run-time library for Linux)

- icsneoAPI (symbolic link should be located at
/usr/lib/libicsneoAPI.so)

5

6

Release Notes for version 0.1.3 (Release Date:
10/6/2010)
 The API was updated to use the open source shared library

libFTDI. Previous versions relied on the libftd2xx library available
from FTDI, but that version has not been updated to reflect changes
in the USB subsystem in the latest versions of the Linux kernel. You
will need to have the libftdi.so in your /usr/lib directory. You can
either download and install the the libftdi shared library using your
Linux desktop software center, or download and build it from here:

 http://www.intra2net.com/en/developer/libftdi/download.php
 The API was developed and tested using Ubuntu 10.4.1, with Linux

kernel version 2.6.32.24 - generic.
 neoVI Yellow firmware update is now working


This release supports the following Intrepid devices:

 neoVI Fire (all hardware revisions)
ValueCAN 3
neoVI Yellow (hardware version 1.2 only)

Release Notes for version 0.1.2 (Release Date:
01/20/2010)


 This release supports the following Intrepid devices:

 neoVI Fire (all hardware revisions)
ValueCAN 3
neoVI Yellow (hardware version 1.2 only)



neoVI Yellow firmware update will fail in this version. I still need to
track down this bug. If you have a neoVI Yellow and can't connect
to it, it's likely that it's firmware does not match the version required
by this release. I have included a Windows application called
neoVI3GExplorer.exe. Try running it on a Windows PC and
connecting to the neoVI Yellow. neoVI3GExplorer will update the

7

http://www.intra2net.com/en/developer/libftdi/download.php
http://www.intra2net.com/en/developer/libftdi/download.php

Yellow to the proper firmware version. In fact, I recommend doing
this with any supported neoVI device that you are having trouble
connecting to.

** Note - In order for neoVI3GExplorer to connect to a neoVI
device on the Windows PC, you must have Intrepid's signed USB
drivers installed. You can download the latest version from
www.intrepidsupport.com. On that page look for the link "Drivers
(auto install)" under the Product Drivers bullet.

 Release Notes for version 0.1.1 (Release Date:
08/21/2009)


 This release adds support for updating the firmware on a neoVI Fire
(board rev 1.1). neoVI Fire 1.2 support will be in the next release.



CoreMini scripting functions have been added


Documentation updated. Release and installation notes added to
PDF documentation



The CoreMiniScriptExample demonstrates how to load a script into
the neoVI or ValueCAN3 and run it



Firmed up the timing issues for connecting to devices and updating
their firmware. I am still occasionally seeing firmware updates
time-out half-way through the update. If this happens, try
removing/replacing the USB cable from the device and
power-cycling.

Release Notes for version 0.1.0 (Release Date:
07/20/2009)


 The first release of this Linux shared library is for evaluation
8

purposes only


 This initial release supports the ValueCAN3 and neoVI Fire (board
rev 1.1)



 CoreMini scripting is not supported for the first release. This
functionality will be included in a later release



 A neoVI device can only be opened by one application at a time. A
future version of the library will provide the ability to allow multiple
applications to share a device



 The LinuxAPIHelp.pdf file outlines the supported API functions
and their usage



 The icsnAPI.pdf file covers the Windows version of the icsneoAPI
but is included because it contains more information regarding
neoVI devices



 The ReadMe.txt file describes how to build an application to utilize
the icsneoAPI



 This release of the icsneoAPI for Linux requires specific firmware
to be present on the neoVI Fire. The ability to flash update the
neoVI Fire from the shared library for Linux will not be supported
until the next release of the API. The firmware versions : MPIC =
1.84 UPIC = 1.2, LPIC = 1.24 JPIC = 1.5



 If you are using a neoVI Fire and cannot open it, or you are not able
to read/transmit message, contact me at the email address below.
We may need to have you reflash your neoVI to a different version
of firmware using a Windows PC. Please contact me at the email
address below if this occurs



9

 Firmware updating for the ValueCAN3 is supported in this version
and will happen on connect if the firmware in your device does not
match that expected by the icsneoAPI. The GeneralTestProject
demonstrates how to set callback functions to trap and display the
output of a flash update to the user

10

Linux API Overview - intrepidcs API

icsneoAPI for Linux may be downloaded from icsneoAPI For Linux.
The current release version is 0.1.3

 API Function List
Name Description

InitializeAPI Initializes the API and all of it's variables.

ShutdownAPI Cleans up resources used by the API.

FindNeoDevices Used to locate connected neoVI devices.

OpenNeoDevice Used to open a communication link with a specific neoVI device.

ClosePort Closes the communication link with the neoVI device.

GetMessages Reads messages from the neoVI device.

WaitForRxMessagesWith
TimeOut Waits a specified amount of time for a received message.

TxMessages Transmits messages to vehicle networks using a neoVI device.

SetBitRate Sets the baud or bit rate for a specific neoVI network.

SetReflashDisplayCallbac
ks Sets callback function pointers for flashing a neoVI device.

GetTimeStampForMsg Calculates and returns the timestamp for a message.

FreeObject Releases system resources used by the neoVI device.

GetHWFirmwareInfo Gets the firmware version stored in a neoVI device.

GetDLLFirmwareInfo Gets the firmware version stored in the API.

GetStoredFirmwareInfo Gets the firmware version stored in the API for a specified type of neoVI device.

GetLastAPIError Returns the error generated by the last API call.

GetErrorInfo Returns a text description of an API error.

GetErrorInfoW Returns a text description of an API error, in wide character format.

GetErrorMessages Returns the API error message queue.

EnableNetworkRXQueue Enables and disables the receive queue for network messages.

GetVCAN3Settings Gets device and network parameters for a ValueCAN3 device.

SetVCAN3Settings Sets device and network parameters for a ValueCAN3 device.

GetFireSettings Gets device and network parameters for a neoVI Fire device.

SetFireSettings Sets device and network parameters for a neoVI Fire device.

GetDeviceParameters Gets individual parameters for a neoVI device.

SetDeviceParameters Sets individual parameters for a neoVI device.

ScriptStart Starts execution of a script that has been downloaded to a neoVI device

ScriptStop Stops execution of a script running on a neoVI device

ScriptLoad Downloads a script to a connected neoVI device into a specified location

ScriptClear Clears a script from a specific location on a neoVI device

ScriptStartFBlock Starts a function block within a script on a neoVI device

ScriptGetFBlockStatus Returns the run status of a function block within a script on a neoVI device

11

ScriptStopFBlock Stops the execution of a function block within a script on a neoVI device

ScriptGetScriptStatus returns the run status of a specified function block within a script

ScriptReadAppSignal Read an application signal from a script running on a neoVI device

ScriptWriteAppSignal Set the value of an application signal in a script running on a neoVI device

ScriptReadRxMessage Reads parameters for a receive message defined in a script on a neoVI device

ScriptReadTxMessage Reads parameters for a transmit message defined within a script on a neoVI device

ScriptWriteRxMessage Alter a receive message defined within script on a neoVI device

ScriptWriteTxMessage Alter a transmit message defined within a script on a neoVI device

ScriptReadISO15765TxM
essage

Read parameters of an ISO15765-2 long transmit message defined within a script on a neoVI
device

ScriptWriteISO15765Tx
Message

Change the parameters for an ISO15765-2 long transmit message defined within a script on a
neoVI device

GetRTC Returns the value of the real-time clock on a connected neoVI device

SetRTC Set the value of the real-time clock on a connected neoVI device

ntrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, October 05, 2010

12

http://www.intrepidcs.com

InitializeAPI Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method initializes the API and prepares it for use

 C/C++ Declare

 int icsneoInitializeAPI(void);

 Parameters

None

Return Values

 None

Remarks

 Must be called before any other API calls are made.

Example

 C/C++ Example

 icsneoInitializeAPI();

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

13

http://www.intrepidcs.com

ShutdownAPI Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method shuts down the API and releases any resources allocated during its use

 C/C++ Declare

 int icsneoShutdownAPI(void);

 Parameters

None

Return Values

 None

Remarks

 Must be called when the application is done using the API.

Example

 C/C++ Example

 icsneoShutdownAPI();

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

14

http://www.intrepidcs.com

FindNeoDevices Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method returns the neoVI hardware devices connected to the PC.

 C/C++ Declare

 int icsneoFindNeoDevices(unsigned long DeviceTypes, NeoDevice *pNeoDevices, int

*pNumberOfDevices);

Parameters

 DeviceTypes
 [in] Specifies the types of neoVI devices to find. Currently supported values are:

NEODEVICE_FIRE 8
NEODEVICE_VCAN3 16
NEODEVICE_YELLOW 32
NEODEVICE_ALL 65535

 These values are defined in the icsnVC40.h file.

You may use logical OR to choose which devices to look for or use NEODEVICE_ALL to specify all devices.

pNeoDevices
[out] This is the address of the first element of an array of NeoDevice structures (defined in icsnVC40.h). This array
should big enough to hold 255 devices. You must specify the size of the pNeoDevices array in the
pNumberOfDevices parameter. The number of devices found will be limited to the value of pNumberofDevices or
255, whichever is lower. Each returned NeoDevice structure will contain information for each device such as its type,
device ‘handle’ and serial number.

pNumberOfDevices
 [in/out] In: Specifies the size of the pNeoDevices array. Must be in the range 0 to 255.
 Out: Specifies the number of neo devices that were found. This can be in the range 0 to 255.

Return Values

 1 if the function succeeded. 0 if it failed for any reason. If the function succeeds but no devices are found 1 will still be
returned and pNumberOfDevices will equal 0.

Remarks

 The NeoDevice array elements that are returned with this function may be passed to OpenNeoDevice so
that individual neoVI devices can be opened.

Example

 C/C++ Example:

 NeoDevice Devices[255];

unsigned long lDevTypes = NEODEVICE_VCAN3 | NEODEVICE_FIRE;

int iNumDevices = 255;

int iRetVal = 0;

//Search for just ValueCAN3 and FIRE

15

iRetVal = icsneoFindNeoDevices(lDevTypes, Devices, &iNumDevices);

//Search for all supported neoVI types

iRetVal = icsneoFindNeoDevices(NEODEVICE_ALL, Devices, &iNumDevices);

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

16

http://www.intrepidcs.com

OpenNeoDevice Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method opens a communication link the a neoVI device.

 C/C++ Declare

 int icsneoOpenNeoDevice(NeoDevice *pNeoDevice, int *hObject, unsigned char *bNetworkIDs, int
bConfigRead, int bSyncToPC);

 Parameters

 pNeoDevice
 [in] A valid NeoDevice structure filled with information about a specific neoVI device. This must be obtained by
calling FindNeoDevices.

 hObject
 [out] The address of an int value. This will be set to the handle of the neoVI driver object that is created. It is
needed as an input parameter to other API function calls. Every time you create a new neoVI object you must call
ClosePort and FreeObject to avoid creating a memory and resource leak.

 bNetworkIDs
 [in] This is an array of number IDs which specify the NetworkID parameter of each network. This allows you to
assign a custom network ID to each network. Normally, you will assign consecutive IDs to each of the networks.
See NetworkIDList for a list of current network ID's. You may also set this parameter to NULL (zero) and the
default network ID's will be used.

 bConfigRead
 [in] Specifies whether the DLL should read the neoVI's device configuration before enabling the device. It is
recommended that this value be set to 1.

 bSyncToPC
 [in] Not supported

 Return Values

 If the port has been opened successfully, the return value will be 1. Otherwise the return value will be zero.

Remarks

 Each successful call to OpenNeoDevice should be matched with a call to the ClosePort and FreeObject methods.

Example

 C/C++ Example

 int hObject = 0; // holds a handle to the neoVI object
int iRetVal;
int iCount;
NeoDevice *pDevice = pParmIn; //created previously

 iRetVal = icsneoOpenNeoDevice(pDevice, &hObject, NULL, 1, 0);

17

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

18

http://www.intrepidcs.com

ClosePort Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method closes the communication link with the neoVI hardware.

 C/C++ Declare

 int icsneoClosePort(int hObject, int * pNumberOfErrors);

 Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pNumberOfErrors
 [out] Specifies the number of errors in the neoVI DLL error queue. You can read out the errors by
calling the GetErrorMessages method.

 Return Values

 If the port has been closed successfully the return value will be 1. Otherwise, it will return zero. It will
also return zero if the port is already closed.

 Remarks

 Must be called once for each successful call to OpenNeoDevice or memory and resource leaks will occur.

 Example

 C/C++ Example

 int lNumberOfErrors; // used to get the number of errors

int iResult;

 // Close Communication

iResult = icsneoClosePort(hObject, &iNumberOfErrors);

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

19

http://www.intrepidcs.com

GetMessages Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method reads messages from the neoVI device.

 C/C++ Declare

 int icsneoGetMessages(int hObject, icsSpyMessage *pMsg, int *pNumberOfMessages, int

*pNumberOfErrors);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pMsg
 [out] This is the address of the first element of an array of icsSpyMessage structures. This array will
be loaded with messages received by the hardware. This array must be sized to fit 20,000 icsSpyMessage
structures.

 pNumberOfMessages
 [out] Specifies the number of messages the driver has loaded in the pMsg array. This number can be
up to 20,000 messages.

 pNumberOfErrors
 [out] Specifies the number of errors in the neoVI DLL error queue. Errors are obtained using
GetErrorMessages.

 Return Values

 Returns 1 if successful, 0 if an error occurred. GetLastAPIError must be called to obtain the specific error.
This function will return 1 even if no messages were received, provided there are no errors. The errors that
can be generated by this function are:

NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

 Remarks

 The driver object will hold 20,000 received messages before it will generate an rx buffer overflow error
(indicated by a NEOVI_ERROR_DLL_RX_MSG_BUFFER_OVERFLOW error message in the error queue). It is
the job of the application software to read this buffer at regular intervals. The rate that the application
needs to read these messages is dependant on the rate messages are received on the bus. For example,
a high bandwidth CAN bus can generate 5000 messages per second. In this case you must read out the
messages at least every four seconds or overflow errors will result.

 Example

 C/C++ Example

 int hObject = 0; // holds a handle to the neoVI object

icsSpyMessage stMessages[20000]; // holds the received messages

int iResult;

int iNumberOfErrors;

int iNumberOfMessages;

 // read out the messages

iResult = icsneoGetMessages(hObject,stMessages,&iNumberOfMessages,&iNumberOfErrors);

20

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

21

http://www.intrepidcs.com

WaitForRxMessagesWithTimeOut Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method is used to wait a specified amount of time for received messages from the neoVI
hardware.

 C/C++ Declare

 int icsneoWaitForRxMessagesWithTimeOut(int hObject, unsigned int iTimeOut);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iTimeOut
 [in] Specifies the amount of time in milliseconds that the function will wait for a received message
before returning.

 Return Values

 0 if no message was received during the wait period. 1 if a message was received. -1 will be returned if
there is an error condition. GetLastAPIError must be called to obtain the specific error. The errors that can be
generated by this function are:

NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

 Remarks

 This function allows an application to avoid 'polling' for received messages. It will return as soon as a
message is received or when the timeout specified has been reached.

Example

 C/C++ Example

 int hObject = 0; // holds a handle to the neoVI object

icsSpyMessage stMessages[20000]; // holds the received messages

int iResult;

int iNumberOfErrors;

int iNumberOfMessages;

unsigned int iTimeOut = 5; //milliseconds

bool bDone = false;

while(!bDone)

{

 iResult = icsneoWaitForRxMessagesWithTimeOut(hObject, iTimeOut);

 if(iResult == 0)

 continue; //no messages received

 iResult = icsneoGetMessages(hObject,stMessages,&iNumberOfMessages,&iNumberOfErrors);

 if(iResult == 0)

 printf("Problem Reading Messages\n");

 else

 printf("Read %d Messages\n", iNumberOfMessages);

}

22

 return 0;

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

23

http://www.intrepidcs.com

TxMessages Method - intrepidcs API
C/C++ declare - Parameters - Return Value - Remarks - C/C++ example

 This method transmits messages asynchronously to vehicle networks using the neoVI hardware.

 C/C++ Declare

 int icsneoTxMessages(int hObject, icsSpyMessage *pMsg, int lNetworkID, int

lNumMessages);

 Parameters

 hObject
 [in] Handle which specifies the driver object created by OpenNeoDevice

 pMsg
 [in] This is the address of the first element of an array of icsSpyMessage structures. This array will be
loaded by the application software with messages that are to be transmitted by the hardware.

 lNetworkID
 [in] Specifies the network to transmit the message on. See NetworkID List for a list of valid Network ID
values. Network support varies by neoVI device. NETID_DEVICE transmits on to the neoVI Device Virtual
Network (see users manual).

 lNumMessages
 [in] Specifies the number of messages to be transmitted. This parameter should always be set to one
unless you are transmitting a long Message.

Return Values

 Returns 1 if successful, 0 if an error occurred. GetLastAPIError must be called to obtain the specific error. The
errors that can be generated by this function are:

NEOVI_ERROR_DLL_ISOTX_DATA_BUFFER_ALLOC = 13
NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_ILLEGAL_TX_NETWORK= 90
NEOVI_ERROR_DLL_3G_DEVICE_LICENSE_NEEDS_TO_BE_UPGRADED = 190

 Remarks

 This function call adds a transmit message to the transmit queue. The message will be transmitted when
the network is free and all previously transmitted messages have been transmitted.

Transmit Report

 After the messages has been transmitted there will be a transmit report message returned from the
device. The transmit report will be read out with GetMessages. Any message read which has the
SPY_STATUS_TX_MSG (icsSpyStatusTx) bit set in the status bitfield is a transmit report.

You can also identify a particular transmitted message with DescriptionID field. This two byte field (only
14 bits are used) allows the programmer to assign an arbitrary number to a message. This number is then
returned in the transmit report.

 The transmit report does not necessarily mean the message was transmitted successfully. For example,
the Ford SCP network will return a Transmit Report if it had tried to send a message. Therefore, the
programmer should always check the GlobalError Flag in the status bitfield.

 To transmit different messages, set the appropriate bits in the status bitfields. For example, there are
bits for init waveforms, extended identifiers and remote frames.

24

 Example

 C/C++ Example

 int hObject = 0; // holds a handle to the neoVI object

icsSpyMessage stMsg;

int iResult;

// Load the message to be transmitted ArbID = FF standard data 0x22 0x52 0x12 0x28

stMsg.ArbIDOrHeader = 0xFF;

stMsg.NumberBytesData = 4;

stMsg.Data[0] = 0x22;

stMsg.Data[1] = 0x52;

stMsg.Data[2] = 0x12;

stMsg.Data[3] = 0x28;

 // Status Bitfield standard ID no remote frame

stMsg.StatusBitField = 0;

stMsg.StatusBitField2 = 0;

// Transmit the message on high speed can

iResult = icsneoTxMessages(hObject,&stMsg,NETID_HSCAN,1);

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

25

http://www.intrepidcs.com

SetBitRate Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method sets bit rates for networks on neoVI devices

C/C++ Declare

int icsneoSetBitRate(int hObject, int iBitRate, int iNetworkID);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iBitRate
 [in] Specifies bit rate setting. Valid values depend on the network specified.

 For the networks NETID_HSCAN, NETID_MSCAN, NETID_SWCAN, NETID_FIRE_HSCAN2,
NETID_HSCAN3, NETID_LSFTCAN,
 valid bit rates are 2000, 33333, 50000, 62500, 83333, 100000, 125000, 250000, 500000, 800000, 1000000

 For the networks NETID_LIN, NETID_ISO2, NETID_FIRE_LIN2, NETID_FIRE_LIN3,
NETID_FIRE_LIN4,
 valid bit rates are

 For the network NETID_FIRE_CGI valid bit rates are 625000 and 115200

iNetworkID
 [in] Specifies the network. The valid values are:

 NETID_HSCAN, NETID_MSCAN, NETID_SWCAN, NETID_FIRE_HSCAN2, NETID_HSCAN3,
NETID_LSFTCAN, NETID_LIN,
 NETID_ISO2, NETID_FIRE_LIN2, NETID_FIRE_LIN3, NETID_FIRE_LIN4, NETID_FIRE_CGI

 These values are defined in the icsnVC40.h file

 Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

NEOVI_ERROR_DLL_INVALID_NETID = 8
NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_RED_INVALID_BAUD_SPECIFIED = 122
NEOVI_ERROR_DLL_SEND_DEVICE_CONFIG_ERROR = 229
NEOVI_ERROR_DLL_GET_DEVICE_CONFIG_ERROR = 230
NEOVI_ERROR_DLL_UNKNOWN_NEOVI_TYPE = 231

 Remarks

 The specified network must exist on the connected neoVI device.

Example

26

C/C++ Example:

 int iRetVal;

iRetVal = icsneoSetBitrate(hObject, 500000, NETID_HSCAN);

if(iRetVal == 0)

{

 printf("\nFailed to set the bit rate");

}

else

{

 printf("\nSuccessfully set the bit rate");

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

27

http://www.intrepidcs.com

SetReflashDisplayCallbacks Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

This method is used to set 'call back' functions that will be called by the intrepidcs API when
flashing a neoVI device. The use of call back functions allows the client application to receive the
status messages and display them as desired.

 C/C++ Declare

 int icsneoSetReflashDisplayCallbacks(void (*OnPrompt)(unsigned long), void

(*OnReflashUpdate)(const wchar_t *, unsigned long));

Parameters

 void (*OnPrompt)(unsigned long)
 [in] Specifies a function pointer that will be called when a message must be displayed instructing the
user to disconnect and then re-connect the neoVI from the USB port. The function receives an unsigned
long that will contain the serial number of the neoVI device being flash updated. Before returning from
this function call the user of the client application must be prompted to unplug the neoVI from the USB
port and then re-connect it before continuing. This is to put the USB chip in the neoVI into bootloader
mode so that flashing can begin. This function will not be called when flashing a ValueCAN3 device.

void (*OnReflashUpdate)(const wchar_t *, unsigned long)
 [in] Specifies a function pointer that will be called when a flashing status message is ready to be
displayed. The function receives a pointer to a wide character string that contains the status message to
display. It also receives an unsigned long that contains the percentage complete for the current chip
being flashed. The percentage value will reset to 0 for each new chip. For example, the neoVI Fire has
four chips to flash while the ValueCAN3 has only two.

 Return Values

 1 if successful, 0 if either function pointer is NULL.

 Remarks

Once the callbacks have been set they are valid and active until the the DLL is unloaded or until the ClearReflashDisplayCallbacks
function is called.

Example

 C/C++ Example:

void ReflashStatus(const wchar_t* status, unsigned long percent)

{

 printf("%ls %i % \r\n", status, percent);

}

void BootLoaderCallBack(unsigned long SerialNumber)

{

 printf("Flashing neoVI #%d\r\nDisconnect USB, reconnect USB and then hit any

key....\r\n", SerialNumber);

 //process users key press here

}

void MyFunction(void)

{

28

 icsneoSetReflashCallbacks(BootLoaderCallBack, ReflashStatus);

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

29

http://www.intrepidcs.com

GetTimeStampForMsg Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method calculates the timestamp for a message, based on the connected hardware type,
and converts it to a usable variable.

 C/C++ Declare

int icsneoGetTimeStampForMsg(int hObject, icsSpyMessage *pMsg, icsSpyMessage *pMsg,

double *pTimeStamp);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pMsg
 [in] The message to be used for calculating timestamp.

pTimeStamp
 [out] The calculated timestamp.

Return Values

 Returns 1 if successful, 0 if an error occurred. GetLastAPIError must be called to obtain the specific error. The
errors that can be generated by this function are:

NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

Remarks

 Different models of neoVI devices have different time resolutions. This function uses the proper formula
to calculate a timestamp based on the connected device type.

Example

 C/C++ Example

 int hObject;

int iResult;

double dTimeStamp;

icsSpyMessage Msg;

iResult = icsneoGetTimeStampForMsg(m_hObject, &Msg, &dTimeStamp);

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

30

http://www.intrepidcs.com

FreeObject Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method releases system resources used by the neoVI device.

 C/C++ Declare

 void icsneoFreeObject(int hObject);

 Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 Return Values

 None.

Remarks

 This method is used to release any resources that were allocated by OpenNeoDevice. Applications that
create neoVI handles should release them using this method, however, the intrepidCS API will release any
resources that it created for the client application when the client application ends and the API is
unloaded.

 Example

 C/C++ Example

 icsneoFreeObject(hObject);

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

31

http://www.intrepidcs.com

GetHWFirmwareInfo Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method returns the firmware version of the open neoVI device.

 C/C++ Declare

 int icsneoGetHWFirmwareInfo(int hObject, stAPIFirmwareInfo *pInfo);

 Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pInfo
 [out] Pointer to an stAPIFirmwareInfo structure.

Return Values

 Returns 1 if successful, 0 if an error occurred.

Remarks

This method returns the firmware version stored in the open neoVI device.

 Example

C/C++ Example

stAPIFirmwareInfo FirmwareInfo = new stAPIFirmwareInfo();

int iResult;

iResult = icsNeoDll.icsneoGetHWFirmwareInfo(m_hObject, ref FirmwareInfo);

if(iResult == 0)

{

 printf("Problem getting the neoVI's firmware information");

 return;

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

32

http://www.intrepidcs.com

GetDLLFirmwareInfo Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method returns the firmware version stored within the DLL API.

 C/C++ Declare

 int icsneoGetDLLFirmwareInfo(int hObject, stAPIFirmwareInfo *pInfo);

 Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pInfo
 [out] Pointer to an stAPIFirmwareInfo structure.

Return Values

 Returns 1 if successful, 0 if an error occurred.

Remarks

This method returns the version information for the neoVI firmware stored within the neoVI DLL API.

Example

 C# Example

 stAPIFirmwareInfo FirmwareInfo = new stAPIFirmwareInfo();

int iResult;

iResult = icsNeoDll.icsneoGetDLLFirmwareInfo(m_hObject, ref FirmwareInfo);

if(iResult == 0)

{

 printf("Problem getting the version of the firmware stored within the DLL API");

 return;

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

33

http://www.intrepidcs.com

GetStoredFirmwareInfo Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method returns the firmware version stored in the DLL for a specific type of neoVI device.

 C/C++ Declare

 int icsneoGetStoredFirmwareInfo(unsigned long NeoDeviceType, char *pInfo);

 Parameters

 NeoDeviceType
 [in] Specifies the type of neoVI device. Currently supported values are:

 NEODEVICE_FIRE 8
 NEODEVICE_VCAN3 16
 NEODEVICE_YELLOW 32

pInfo
 [out] An array where the firmware information will be stored. This array must be at least 50 bytes in
size.

 Return Values

 Returns 1 if successful, 0 if an error occurred.

Remarks

This method returns the firmware version stored in the DLL for a specific type of neoVI device.

The string returned will be the version number of each programmable chip on the device:

"chip name:version,chipname:version,..."

 Examples:

Fire: "MPIC:1.84,UPIC:1.2,LPIC:1.24,JPIC:1.5"
ValueCAN3: "MPIC:0.38"
Yellow: "MPIC:0.2,UPIC:1.2"

 Example

 C/C++ Example

 char FirmwareInfo[50];

int iResult;

iResult = icsneoGetStoredFirmwareInfo(NEODEVICE_FIRE, FirmwareInfo);

if(iResult == 0)

{

 printf("Problem getting the stored firmware information");

 return;

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

34

http://www.intrepidcs.com

GetLastAPIError Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method returns the error generated by the last API call.

 C/C++ Declare

 int icsneoGetLastAPIError(int hObject, int *piErrorNumber);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 piErrorNumber
 [out] The value of the error generated by the previous API call will be returned. The text description of the error can
then be obtained by calling GetErrorInfo.

 Return Values

 If an error was generated and stored during the last API call then 1 will be returned. 0 will be returned if no error was
generated since the port was opened or the last time that GetLastAPIError was called. The stored error will be
cleared after this call. API errors are generated and stored on a 'per-thread' basis. The calling thread will only receive
errors generated within it's own context. If a new API error is generated before the previous error has been retrieved,
the previous error will be lost. All errors generated can still be retrieved using GetErrorMessages. However,
GetErrorMessages will return errors generated in all threads, not just the current thread.

 Remarks

 Example

C/C++ Example:

unsigned long ulErrorNumber;

if(iResult != 1)

{

 icsneoGetLastAPIError(&ulErrorNumber);

}
intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

35

http://www.intrepidcs.com

GetErrorInfo Method - intrepidcs API
C/C++ declare - Parameters - Return Value - Remarks - C/C++ example

 This method returns a text description of an intrepidcs API error number.

 C/C++ Declare

 int icsneoGetErrorInfo(int lErrorNumber,

 char *szErrorDescriptionShort,

 char *szErrorDescriptionLong,

 int *lMaxLengthShort,

 int *lMaxLengthLong,

 int *lErrorSeverity,

 int *lRestartNeeded);

 Parameters

 lErrorNumber
 [in] This is the number of the error message returned from GetErrorMessages.

 sErrorDescriptionShort
 [out] This is short description of the error. This parameter should be sized to include up to 255
characters including the NULL terminator.

 sErrorDescriptionLong
 [out] This is longer more detailed description of the error. This parameter should be sized to include up
to 255 characters including the NULL terminator.

lMaxLengthShort
 [in] This is the size in characters of the sErrorDescriptionShort array that is being passed in. This
value must be 255 or less.

lMaxLengthLong
 [in] This is the size in characters of the sErrorDescriptionLong array that is being passed in. This value
must be 255 or less.

 lErrorSeverity
 [out] This indicates the error severity. This is estimated severity for the application and doesn't have
significant meaning. See Table 1 below for more information.

 lRestartNeeded
 [out] If 1 it is recommend that the application close communications with the DLL and reopen it.

 Return Values

 If the error number was found successfully the return value will be non-zero.

 Remarks

 None.

 Table 1 - Descriptions of Error Severity

Error Severity Description

const unsigned long icsspyErrCritical=0x10; A critical error which affects operation or accuracy

const unsigned long icsspyErrExclamation=0x30; An important error which may be critical depending
on the application.

const unsigned long icsspyErrInformation=0x40; An error which probably does not need attention.

36

const unsigned long icsspyErrQuestion=0x20; An error which is not understood.

 Example

C/C++ Example

lResult = icsneoGetErrorMessages(hObject,iErrors, &lNumberOfErrors);

 if(lResult == 0)

 printf("Problem Reading errors");

 // dump the neoVI errors

if (lNumberOfErrors > 0)

{

 for (lCount = 0; lCount < lNumberOfErrors; lCount++)

 {

 wprintf(szOut, "Error %d - ", iErrors[lCount]);

icsneoGetErrorInfo(iErrors[lCount],szDescriptionShort,szDescriptionLong,

&lMaxLengthShort,&lMaxLengthLong,&lErrorSeverity,&lRestartNeeded);

 printf("%s" szDescriptionShort);

 printf("\n");

 }

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, October 05, 2010

37

http://www.intrepidcs.com

GetErrorInfoW Method - intrepidcs API
C/C++ declare - Parameters - Return Value - Remarks - C/C++ example

 This method returns a text description of an intrepidcs API error number, in wide character
format.

 C/C++ Declare

 int icsneoGetErrorInfoW(int lErrorNumber,

 wchar_t *szErrorDescriptionShort,

 wchar_t *szErrorDescriptionLong,

 int *lMaxLengthShort,

 int *lMaxLengthLong,

 int *lErrorSeverity,

 int *lRestartNeeded);

 Parameters

 lErrorNumber
 [in] This is the number of the error message returned from GetErrorMessages.

 sErrorDescriptionShort
 [out] This is short description of the error. This parameter should be sized to include up to 255
characters including the NULL terminator.

 sErrorDescriptionLong
 [out] This is longer more detailed description of the error. This parameter should be sized to include up
to 255 characters including the NULL terminator.

lMaxLengthShort
 [in] This is the size in characters of the sErrorDescriptionShort array that is being passed in. This
value must be 255 or less.

lMaxLengthLong
 [in] This is the size in characters of the sErrorDescriptionLong array that is being passed in. This value
must be 255 or less.

 lErrorSeverity
 [out] This indicates the error severity. This is estimated severity for the application and doesn't have
significant meaning. See Table 1 below for more information.

 lRestartNeeded
 [out] If 1 it is recommend that the application close communications with the DLL and reopen it.

 Return Values

 If the error number was found successfully the return value will be non-zero.

 Remarks

 None.

 Table 1 - Descriptions of Error Severity

Error Severity Description

const unsigned long icsspyErrCritical=0x10; A critical error which affects operation or accuracy

const unsigned long icsspyErrExclamation=0x30; An important error which may be critical depending
on the application.

38

const unsigned long icsspyErrInformation=0x40; An error which probably does not need attention.

const unsigned long icsspyErrQuestion=0x20; An error which is not understood.

 Example

C/C++ Example

lResult = icsneoGetErrorMessages(hObject,iErrors, &lNumberOfErrors);

 if(lResult == 0)

 printf("Problem Reading errors");

 // dump the neoVI errors

if (lNumberOfErrors > 0)

{

 for (lCount = 0; lCount < lNumberOfErrors; lCount++)

 {

 wprintf(szOut, "Error %d - ", iErrors[lCount]);

icsneoGetErrorInfoW(iErrors[lCount],szDescriptionShort,szDescriptionLong,

&lMaxLengthShort,&lMaxLengthLong,&lErrorSeverity,&lRestartNeeded);

 printf("%S", szDescriptionShort);

 printf("\n");

 }

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, October 05, 2010

39

http://www.intrepidcs.com

GetErrorMessages Method - intrepidcs API
C/C++ declare - Parameters - Return Value - Remarks - C/C++ example

 This method reads the neoVI DLL error message queue.

 C/C++ Declare

 int icsneoGetErrorMessages(int hObject, int *pErrorMsgs, int *pNumberOfErrors);

Parameters

 hObject
 [in] Specifies the driver object created with OpenNeoDevice.

 pErrorMsgs
 [out] This is the address of the first element of an array of long variables of at least 600 elements.
This array will be loaded with the current error queue. The error queue will contain errors generated by all
threads, not just the current thread. You can get a text description of this error using GetErrorInfo.

 pNumberOfErrors
 [out] Specifies the number of errors copied into the pErrorMsgs buffer. The maximum value will be 600.

 Return Values

 Returns 1 if successful, 0 on failure.

Remarks

 The error queue will be reset after this method is called.

 Example

 C/C++ Example

 int hObject = 0; // holds a handle to the neoVI object

int iErrors[599];

int lResult;

int lNumberOfErrors;

wchar_t szOut[200];

long lCount;

 // Read the errors from the DLL

lResult = icsneoGetErrorMessages(hObject,iErrors,&lNumberOfErrors);

// dump the neoVI errors to the debug window

if(lNumberOfErrors > 0)

{

 for(lCount = 0;lCount <lNumberOfErrors; lCount++)

 {

 wsprintf(szOut, "Error %d\n", iErrors[lCount]);

 }

}

else

 printf("No Errors to report\n");

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

40

http://www.intrepidcs.com

EnableNetworkRXQueue Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method enables or disables the received messages queue for a specific application
connected to a neoVI device.

 C/C++ Declare

 int icsneoEnableNetworkRXQueue(int hObject, int lEnable);

 Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

lEnable
 [in] 1 to enable network receive, 0 to disable network receive.

 Return Values

 Returns 1 if successful, 0 if an error occurred. GetLastAPIError must be called to obtain the specific error. The
errors that can be generated by this function are:

NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

 Remarks

 This function will enable and disable network traffic for a specific client application connected to the
neoVI. Other applications connected to the same neoVI device will not be affected.

 Example

C/C++ Example

icsneoEnableNetworkRXQueue(hObject, 0); //disable the incoming message queue

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010 Monday, January 24, 2005

41

http://www.intrepidcs.com

GetVCAN3Settings Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method reads the configuration settings from a ValueCAN3 device.

 C/C++ Declare

 int icsneoGetVCAN3Settings(int hObject, SVCAN3Settings *pSettings, int *iNumBytes);

 Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pSettings
 [out] Pointer to a SVCAN3Settings structure.

 iNumBytes
 [in] This value is always the size, in bytes, of the SVCAN3Settings structure.

 Return Values

 Returns 1 if successful, 0 if an error occurred. GetLastAPIError must be called to obtain the specific error. The
errors that can be generated by this function are:

NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

 Remarks

 After getting the current settings, you may change the parameters defined in the SVCAN3Settings
structure and write the settings back to the ValueCAN3 using SetVCAN3Settings.

Example

 C/C++ Example

 SVCAN3Settings VCANReadSettings;

int iNumberOfBytes;

int iResult;

//Get the settings

iNumberOfBytes = sizeof(VCANReadSettings);

iResult = icsneoGetVCAN3Settings(m_hObject, &VCANReadSettings , iNumberOfBytes);

if(iResult == 0)

{

 printf("Problem reading VCAN3 configuration");

 return;

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

42

http://www.intrepidcs.com

SetVCAN3Settings Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method writes configuration settings to a ValueCAN3 device.

 C/C++ Declare

 int icsneoSetVCAN3Settings(int hObject, SVCAN3Settings *pSettings, int iNumBytes, int

bSaveToEEPROM);

 Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pSettings
 [in] The address of an allocated SVCAN3Settings structure.

iNumBytes
 [in] This value is always the size, in bytes, of the SVCAN3Settings structure.

bSaveToEEPROM
 [in] If set to 0, the settings changes will revert to the values stored in EEPROM when the ValueCAN3
is power-cycled. If set to 1, the values will overwrite the EEPROM settings and become persistent across
power-cycles of the ValueCAN3.

Return Values

 Returns 1 if successful, 0 if an error occurred. GetLastAPIError must be called to obtain the specific error. The
errors that can be generated by this function are:

NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

 Remarks

 Before using this function, the SVCAN3Settings structure must be initialized with the current neoVI
settings using GetVCAN3Settings.

 Example

 C/C++ Example

 SVCAN3Settings VCANReadSettings;

int iNumberOfBytes;

int iResult;

//################################

//VCANReadSettings struct is read

//and changed as needed before

//Setting the new values

//################################

iNumberOfBytes=sizeof(VCANReadSettings);

iResult = icsneoSetVCAN3Settings(m_hObject, &VCANReadSettings , iNumberOfBytes, 1);

if(iResult == 0)

{

 printf("Problem Sending VCAN configuration");

 return;

43

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

44

http://www.intrepidcs.com

GetFireSettings Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method reads the configuration settings from a neoVI Fire device.

 C/C++ Declare

 int icsneoGetFireSettings(int hObject, SFireSettings *pSettings, int iNumBytes);

 Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pSettings
 [out] Pointer to an SFireSettings structure.

 iNumBytes
 [in] This value is always the size, in bytes, of the SFireSettings structure.

 Return Values

 Returns 1 if successful, 0 if an error occurred. GetLastAPIError must be called to obtain the specific error. The
errors that can be generated by this function are:

NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

 Remarks

 After getting the current settings, you may change the parameters defined in the SFireSettings
structure and write the settings back to the neoVI Fire using SetFireSettings.

Example

 C/C++ Example

 SFireSettings FireReadSettings;

int iNumberOfBytes;

int iResult;

//Get the settings

iNumberOfBytes = sizeof(SFireSettings);

iResult = icsneoGetFireSettings(m_hObject, &FireReadSettings, iNumberOfBytes);

if(iResult == 0)

{

 printf("Problem reading FIRE configuration");

 return;

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

45

http://www.intrepidcs.com

SetFireSettings Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method writes configuration settings to a neoVI Fire device.

 C/C++ Declare

int icsneoSetFireSettings(int hObject, SFireSettings *pSettings, int iNumBytes, int

bSaveToEEPROM);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pSettings
 [out] Pointer to an SFireSettings structure.

iNumBytes
 [in] This value is always the size, in bytes, of the SFireSettings structure.

bSaveToEEPROM
 [in] If set to 0, the settings changes will revert to the values stored in EEPROM when the neoVI is
power-cycled. If set to 1, the values will overwrite the EEPROM settings and become persistent across
power-cycles of the neoVI.

Return Values

 Returns 1 if successful, 0 if an error occurred. GetLastAPIError must be called to obtain the specific error. The
errors that can be generated by this function are:

NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

 Remarks

 Before using this function, the SFireSettings structure must be initialized with the current neoVI settings
using GetFireSettings.

 Example

 C/C++ Example

 SFireSettings FireReadSettings;

int iNumberOfBytes;

int iResult;

//################################

//FireReadSettings struct is read

//and changed as needed before

//Setting the new values

//################################

iNumberOfBytes=sizeof(SFireSettings);

iResult = icsneoSetFireSettings(m_hObject, &FireReadSettings, iNumberOfBytes, 1);

if(iResult == 0)

{

 printf("Problem Sending FIRE configuration");

46

 return;

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

47

http://www.intrepidcs.com

GetDeviceParameters Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method reads individual neoVI device parameters.

 C/C++ Declare

 int icsneoGetDeviceParameters(int hObject, char *pParameters, char *pValues, short

ValuesLength);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pParameters
 [in] This is an array containing parameter names. Each parameter is separated by a comma. The
parameter names are matched without regard to case. All spaces are ignored. The size of this array must
be 1024 bytes or less. The format of the array is:

 ParameterName,ParameterName, , . . .

 See Valid Parameters for a list of parameter names for each device and supported network.

 See examples below on how to build a parameter string.

pValues
 [out] This array will contain the values requested in the pParameters array. The values will be
separated by comma's and in the order of the parameter names specified in the pParameters array. If a
parameter name is not recognized the word "Error" will be placed in that value's location. If the pValues
array length (specified by the ValuesLength parameter) is not long enough to store all of the values, the
retrieval of parameter values will end and only a portion of the values will have be read and stored. The
return value of the function, if greater than 0, will indicate the number of values read.

 Return Values

 -1 if there was an error while reading parameter values from the device. A return value greater than 0
indicates the total number of parameters read. A return value of 0 indicates that ValueLength was
greater than 1024. GetLastAPIError must be called to obtain the specific error. The errors that can be generated
by this function are:

NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

 Remarks

 It is ineffecient to use this function to read one parameter value at a time. If multiple parameters need
to be read, combine them into a long string and call this function once.

 Example

C/C++ Example

char pGetFireParms[] = "network_enables,can1/Mode,can1/Baudrate";

char Values[500];

int iRetVal;

iRetVal = icsneoGetDeviceParameters(hObject, pGetFireParms, Values, 499);

48

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

49

http://www.intrepidcs.com

SetDeviceParameters Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method changes neoVI device parameters.

 C/C++ Declare

 int icsneoSetDeviceParameters(int hObject, char *pParmValue, int *pErrorIndex, int

bSaveToEERPROM);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pParmValue
 [in] This is an array containing parameter names and values. Each parameter and value is separated
by a equal sign, and each parameter/value pairing is separated by a comma. The parameter names are
matched without regard to case. All spaces are ignored. The size of this array must be 1024 bytes or
less. The format of the array is:

 ParameterName=Value,ParameterName=Value, . . .

 See Valid Parameters for a list of parameter names for each device and supported network.

 See examples below on how to build a parameter/value string.

 pErrorIndex
 [out] If there are any errors detected within the pParmValue parameter, this value will indicate index
of the parameter where the first error was found. The index is zero-based.

bSaveToEEPROM
 [in] This value determines if the parameter changes are permanent or will be lost when the device is
power-cycled. Set the value to 1 to write the changes to EEPROM, 0 to keep the changes restricted to
RAM.

 Return Values

 1 if the changes are successful. -1 if there was an error while writing the changes to the device. 0 if
there is an error detected within the pParmValue array. If the return value is 0, indicating an error, check
the pErrorIndex to get the index of the first error detected within the pParmValue array. GetLastAPIError
must be called to obtain the specific error. The errors that can be generated by this function are:

NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

 Remarks

 It is ineffecient to use this function to write one parameter change at a time. If multiple parameters
need to be changed, combine them into a long string and call this function once.

 Example

 C/C++ Example

char SetFireParms[100];

char Values[500];

int iRetVal;

int iErrorIndex;

50

unsigned short NetworkEnables = 0xFFFF;

sprintf(SetFireParms, "network_enables=%d,can1/Baudrate=9,can1/Mode=0", NetworkEnables);

 iRetVal = icsneoSetDeviceParameters(hObject, SetFireParms, &iErrorIndex, 1);

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

51

http://www.intrepidcs.com

ScriptStart Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method starts the execution of a script that has been downloaded to a neoVI device.

 C/C++ Declare

int _stdcall icsneoScriptStart(int hObject, int iLocation);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iLocation
 [in] Specifies the physical location of the script to be executed on the neoVI device. Valid values are:

 SCRIPT_LOCATION_FLASH_MEM = 0 (Valid only on a neoVI Fire or neoVI Red)
 SCRIPT_LOCATION_SDCARD = 1 (Valid only on a neoVI Fire or neoVI Red)
 SCRIPT_LOCATION_VCAN3_MEM = 2 (Valid only on a ValueCAN 3 device)

 These values are defined in the icsnVC40.h file

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_INVALID_SCRIPT_LOCATION = 213
NEOVI_ERROR_DLL_SDCARD_NOT_INSERTED = 214
NEOVI_ERROR_DLL_SCRIPT_START_ERROR = 218

 Remarks

 The script must have been successfully downloaded to the neoVI using LoadScript. Use ScriptStop to
suspend execution of the script. If the connected device is a ValueCAN 3 and a location other than
SCRIPT_LOCATION_VCAN3_MEM will generate an error.

 Example

C/C++ Example:

 int iRetVal;

unsigned long lLastErrNum;

printf("Attempting to start the script\n");

iRetVal = icsneoScriptStart(hObject, DefaultScriptLocation);

if(iRetVal == 0)

{

 printf("Failed to start the script API Error\n");

}

else

{

 printf("Successfully started the script\n");

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

52

http://www.intrepidcs.com

Last Updated : Tuesday, January 19, 2010

53

ScriptStop Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method stops the execution of a script that is running on a neoVI device.

 C/C++ Declare

 int _stdcall icsneoScriptStop(int hObject);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.

Remarks

 If a script is executing on the neoVI calling this method will stop it. The script will still be present on the
device and can be started again by ScriptStart. The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_NO_SCRIPT_RUNNING = 226

Example

 C/C++ Example:

 int iRetVal;

unsigned long lLastErrNum;

iRetVal = icsneoScriptStop(m_hObject);

if(iRetVal == 0)

{

 printf("Failed to Stop the script API Error\n");

}

else

{

 printf("Successfully stopped the script\n");

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

54

http://www.intrepidcs.com

ScriptLoad Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method downloads a script to a connected neoVI device into a specified location.

 C/C++ Declare

 int _stdcall icsneoScriptLoad(int hObject, const unsigned char *bin, unsigned long

len_bytes, int iLocation);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 bin
 [in] An array of bytes that represent a compiled script. These bytes are contained in a header file called cmvspy.h.
 This file is created by Vehicle Spy when a script is compiled. Please see Vehicle Spy documentation for details.

len_bytes
 [in] Specifies the number of bytes represented by the bin parameter

 iLocation
 [in] Specifies the physical location to where the script will be loaded on the neoVI device. Valid values are as
follows:

 SCRIPT_LOCATION_FLASH_MEM = 0 (Valid only on a neoVI Fire or neoVI Red)
 SCRIPT_LOCATION_SDCARD = 1 (Valid only on a neoVI Fire or neoVI Red)
 SCRIPT_LOCATION_VCAN3_MEM = 2 (Valid only on a ValueCAN 3 device)

 These values are defined in the icsnVC40.h file

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be
called to obtain the specific error. The errors that can be generated by this function
are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_INVALID_SCRIPT_LOCATION = 213
NEOVI_ERROR_DLL_SDCARD_NOT_INSERTED = 214
NEOVI_ERROR_DLL_SDCARD_WRITE_ERROR = 216
NEOVI_ERROR_DLL_SCRIPT_ERROR_DOWNLOADING_SCRIPT = 220
NEOVI_ERROR_DLL_SDCARD_READ_ERROR = 217

 Remarks

 The script will be stored on the device in the specified location. If the location is
SCRIPT_LOCATION_FLASH_MEM or SCRIPT_LOCATION_SDCARD the script will persist in the device in that
location until cleared by ScriptClear. If the neoVI device is booted (plugged in to power) without being connected
to a USB port the stored script will execute. The location SCRIPT_LOCATION_VCAN3_MEM applies only to
the ValueCAN 3 device and the storage will be cleared when power is removed from the device.

 Example
55

 C/C++ Example:

 int iRetVal;

unsigned long lLastErrNum;

unsigned long NumBinBytes;

NumBinBytes = CM_EXE_SIZE; //from the cmvspy.h file. The length of the compiled script

//ucharConfigurationArrayPM is defined in cmvspy.h.

//It is a pointer to the array of compiled script bytes

 iRetVal = icsneoScriptLoad(hObject, ucharConfigurationArrayPM, NumBinBytes,

DefaultScriptLocation);

if(iRetVal == 0)

{

 printf("\nFailed to load the script into the neo device);

}

else

{

 printf("\nSuccessfully loaded the script into the neoVI");

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

56

http://www.intrepidcs.com

ScriptClear Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method clears a script from a specific location on a neoVI device.

C/C++ Declare

 int _stdcall icsneoScriptClear(int hObject, int iLocation);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iLocation
 [in] Specifies the physical location of the script to be cleared on the neoVI device. Valid values are:

 SCRIPT_LOCATION_FLASH_MEM = 0 (Valid only on a neoVI Fire or neoVI Red)
 SCRIPT_LOCATION_SDCARD = 1 (Valid only on a neoVI Fire or neoVI Red)
 SCRIPT_LOCATION_VCAN3_MEM = 2 (Valid only on a ValueCAN 3 device)

 These values are defined in the icsnVC40.h file

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_INVALID_SCRIPT_LOCATION = 213
NEOVI_ERROR_DLL_SDCARD_NOT_INSERTED = 214
NEOVI_ERROR_DLL_SDCARD_WRITE_ERROR = 216
NEOVI_ERROR_DLL_SCRIPT_ERROR_CLEARING_SCRIPT = 221

Remarks

 If a script exists in the specified location it will be erased from that location. If the script is running it will
be stopped. Any function blocks that are running will be stopped.

 Example

 C/C++ Example:

 int iRetVal;

unsigned long lLastErrNum;

//Clear the script from it's storage location.

//Both SCRIPT_LOCATION_FLASH_MEM and SCRIPT_LOCATION_SDCARD are persistent.

//On a ValueCAN 3, SCRIPT_LOCATION_VCAN3_MEM will clear when the device

//loses power or resets.

iRetVal = icsneoScriptClear(hObject, DefaultScriptLocation);

if(iRetVal == 0)

{

 printf("\nFailed to clear the script);

}

else

57

{

 printf("\nSuccessfully cleared the script");

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

58

http://www.intrepidcs.com

ScriptStartFBlock Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method starts the specified function block within a script on a neoVI device.

 C/C++ Declare

 int _stdcall icsneoScriptStartFBlock(int hObject, unsigned int iFunctionBlockIndex);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iFunctionBlockIndex
 [in] The index value of the function block to start

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_INVALID_FUNCBLOCK_INDEX = 219
NEOVI_ERROR_DLL_SCRIPT_NO_SCRIPT_RUNNING = 226

Remarks

 The script containing the specified function block must have been successfully downloaded to the neoVI
using LoadScript. The valid index values for a function blocks within a script can be found in the cmvspy.vs3cmb.h
file that is produced by Vehicle Spy. Please see Vehicle Spy documentation.

 Example

 C/C++ Example:

 int iRetVal;

unsigned long lLastErrNum;

iRetVal = icsneoScriptStartFBlock(hObject, Function_Block_1);

if(iRetVal == 0)

{

 printf("\nFailed to start the function block);

}

else

{

 printf("\nSuccessfully started the function block");

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

59

http://www.intrepidcs.com

ScriptGetFBlockStatus Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method returns the run status of a specified function block within a script on a neoVI device.

 C/C++ Declare

int _stdcall icsneoScriptGetFBlockStatus(int hObject, unsigned int iFunctionBlockIndex,

int *piStatus);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iFunctionBlockIndex
 [in] The index value of the function block to start

piStatus
 [out] 0 = stopped 1 = running

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_INVALID_FUNCBLOCK_INDEX = 219
NEOVI_ERROR_DLL_SCRIPT_NO_SCRIPT_RUNNING = 226

Remarks

 The script containing the specified function block must have been successfully downloaded to the neoVI
using ScriptLoadScript. Execution of the script must have been started by using ScriptStartScript. The
valid index values for function blocks within a script can be found in the cmvspy.vs3cmb.h file (Produced by Vehicle
Spy. Please see Vehicle Spy documentation).

 Example

 C/C++ Example:

 int iRetVal;

int iRunStatus;

unsigned long lLastErrNum;

iRetVal = icsneoScriptGetFBlockStatus(hObject, Function_Block_1, &iRunStatus);

if(iRetVal == 0)

{

 printf("\nFailed to check function block status);

}

else

{

 printf("\nFunction block status = %s\r\n", iRunStatus == 0 ? "Stopped" : "Running"

);

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

60

http://www.intrepidcs.com

Last Updated : Tuesday, January 19, 2010

61

ScriptStopFBlock Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method stops the execution of a specified function block within a script on a neoVI device.

 C/C++ Declare

int _stdcall icsneoScriptStopFBlock(int hObject, unsigned int iFunctionBlockIndex);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iFunctionBlockIndex
 [in] The index value of the function block to stop

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_INVALID_FUNCBLOCK_INDEX = 219
NEOVI_ERROR_DLL_SCRIPT_NO_SCRIPT_RUNNING = 226

Remarks

 The script containing the specified function block must have been successfully downloaded to the neoVI
using LoadScript. Execution of the script must have been started by StartScript. Execution of the function block
must have been started using StartFBlock. The valid index values for function blocks within a script can be found in
the cmvspy.vs3cmb.h file (Produced by Vehicle Spy. Please see Vehicle Spy documentation).

 Example

C/C++ Example:

int iRetVal;

unsigned long lLastErrNum;

iRetVal = icsneoScriptStopFBlock(hObject, Function_Block_1);

if(iRetVal == 0)

{

 printf("\nFailed to stop the function block.);

}

else

{

 printf("\nSuccessfully stopped the function block");

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

62

http://www.intrepidcs.com

ScriptGetScriptStatus Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method returns the status of the script on a neoVI device.

 C/C++ Declare

int _stdcall icsneoScriptGetScriptStatus(int hObject, unsigned int iFunctionBlockIndex,

int *piStatus);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iFunctionBlockIndex
 [in] The index value of the function block

piStatus
 [out] 0 = Stopped 1 = Running

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_SCRIPT_NO_SCRIPT_RUNNING = 226

Remarks

 The script must have been successfully downloaded to the neoVI using ScriptLoadScript.

Example

 C/C++ Example:

 int iRetVal;

int iStatus;

unsigned long lLastErrNum;

iRetVal = icsneoScriptGetScriptStatus(hObject, &iStatus);

if(iRetVal == 0)

{

 printf("\nFailed to get the script status. API Error = %d\r\n", lLastErrNum);

}

else

{

 printf("\nScript status = %s\r\n", iStatus == 0 ? "Stopped" : "Running");

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

63

http://www.intrepidcs.com

ScriptReadAppSignal Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method is used to read an application signal from a script running on a neoVI device.

 C/C++ Declare

 int _stdcall icsneoScriptReadAppSignal(int hObject, unsigned int iIndex, double

*dValue);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 unsigned int iIndex
 [in] The index value of the transmit message to read

double *dValue
 [in] Contains the current value of the application signal.

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_INVALID_APPSIG_INDEX = 225
NEOVI_ERROR_DLL_SCRIPT_NO_SCRIPT_RUNNING = 226

Remarks

 The script containing the specified application signal must have been successfully downloaded to the
neoVI using ScriptLoadScript. The script must also have been started using ScriptStart. This function will fail if
ScriptStop has been called. The valid index values for application signals within a script can be found in the
cmvspy.vs3cmb.h file that is produced by Vehicle Spy. Please see Vehicle Spy documentation.

 Example

 C/C++ Example:

 int iRetVal;

unsigned long lLastErrNum;

double dValue = 0;

iRetVal = icsneoScriptReadAppSignal(hObject, App_Signal_1, &dValue);

if(iRetVal == 0)

{

 printf("\nFailed to read the application signal.);

}

else

{

 printf("\nApplication signal = %f\r\n", dValue);

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

64

http://www.intrepidcs.com

65

ScriptWriteAppSignal Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method is used to set the value of an application signal in a script running on a neoVI
device.

 C/C++ Declare

int _stdcall icsneoScriptWriteAppSignal(int hObject, unsigned int iIndex, double

dValue);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iIndex
 [in] The index value of the application signal.

dValue
 [in] The new value of the application signal.

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_INVALID_APPSIG_INDEX = 225

Remarks

 The script containing the specified application signal must have been successfully downloaded to the
neoVI using ScriptLoad. The script must also have been started using ScriptStart. This function will fail if
ScriptStop has been called. The valid index values for application signals within a script can be found in the
cmvspy.vs3cmb.h file that is produced by Vehicle Spy. Please see Vehicle Spy documentation.

 Example

 C/C++ Example:

 int iRetVal;

unsigned long lLastErrNum;

double dValue;

dValue = 999;

iRetVal = icsneoScriptWriteAppSignal(hObject, App_Signal_1, dValue);

if(iRetVal == 0)

{

 printf("\nFailed to write the application signal. API Error = %d", lLastErrNum);

}

else

{

 printf("\nApplication signal write succeeded\r\n");

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

66

http://www.intrepidcs.com

67

ScriptReadRxMessage Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method is used to read the parameters for a receive message defined with a script on a
neoVI device.

 C/C++ Declare

 int _stdcall icsneoScriptReadRxMessage(int hObject, unsigned int iIndex, icsSpyMessage

*pRxMessageMask, icsSpyMessage *pRxMessage);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iIndex
 [in] The index value of the transmit message to read

pTxMessageMask
 [in] This is the address of an instance of an allocated icsSpyMessage structure. The structure will be
loaded with the requested receive message mask.

pTxMessage
 [in] This is the address of an instance of an allocated icsSpyMessage structure. The structure will be
loaded with the requested receive message.

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_INVALID_MSG_INDEX = 224
NEOVI_ERROR_DLL_SCRIPT_NO_SCRIPT_RUNNING = 226

Remarks

 The script containing the specified receive message must have been successfully downloaded to the neoVI using
LoadScript. The script must also have been started using ScriptStart. This function will fail if ScriptStop has been
called. The valid index values for receive messages within a script can be found in the cmvspy.vs3cmb.h file that is
produced by Vehicle Spy. Please see Vehicle Spy documentation.

 Example

 C/C++ Example:

 int iRetVal;

int i;

unsigned long lLastErrNum;

icsSpyMessage MsgMask, Msg;

 iRetVal = icsneoScriptReadRxMessage(hObject, Receive_Msg_1, &MsgMask, &Msg);

if(iRetVal == 0)

{

68

 printf("\nFailed to read the receive message.");

}

else

{

 printf("\nRead the receive message from the script.");

 printf("ArbID = %X Data bytes: ", Msg.ArbIDOrHeader);

 for(i = 0; i < 8; i++)

 {

 printf("%02X ", Msg.Data[i]);

 }

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

69

http://www.intrepidcs.com

ScriptReadTxMessage Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method is used to read the parameters for a transmit message defined within a script on a
neoVI device.

 C/C++ Declare

int _stdcall icsneoScriptReadTxMessage(int hObject, unsigned int iIndex, icsSpyMessage

*pTxMessage);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 unsigned int iIndex
 [in] The index value of the transmit message to read

icsSpyMessage *pTxMessage
 [in] This is the address of an instance of an allocated icsSpyMessage structure. The structure will be
loaded with the requested transmit message.

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_INVALID_MSG_INDEX = 224
NEOVI_ERROR_DLL_SCRIPT_NO_SCRIPT_RUNNING = 226

Remarks

 The script containing the specified transmit message must have been successfully downloaded to the
neoVI using LoadScript. The script must also have been started using ScriptStart. This function will fail if
ScriptStop has been called. The valid index values for transmit messages within a script can be found in the
cmvspy.vs3cmb.h file that is produced by Vehicle Spy. Please see Vehicle Spy documentation.

 Example

 C/C++ Example:

 int iRetVal;

int i;

unsigned long lLastErrNum;

icsSpyMessage Msg;

iRetVal = icsneoScriptReadTxMessage(hObject, TestMessage1, &Msg);

if(iRetVal == 0)

{

 printf("\nFailed to read the transmit message.);

}

else

{

 printf("\nRead the transmit message from the script:");

 printf("ArbID = %X Data bytes: ", Msg.ArbIDOrHeader);

70

 for(i = 0; i < 8; i++)

 {

 printf("%02X ", Msg.Data[i]);

 }

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

71

http://www.intrepidcs.com

ScriptWriteRxMessage Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method is used to alter a receive message defined within script on a neoVI device.

 C/C++ Declare

int _stdcall icsneoScriptWriteRxMessage(int hObject, unsigned int iIndex, icsSpyMessage

*pRxMessageMask, icsSpyMessage *pRxMessage);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

iIndex
 [in] The index value of the transmit message to read

pRxMessageMask
 [in] This is the address of an instance of an allocated icsSpyMessage structure. The structure will be
used to change the specified receive message mask.

pRxMessage
 [in] This is the address of an instance of an allocated icsSpyMessage structure. The structure will be
used to change the specified receive message.

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_INVALID_MSG_INDEX = 224

Remarks

 The script containing the specified receive message must have been successfully downloaded to the
neoVI using ScriptLoad. The script must also have been started using ScriptStart. This function will fail if
ScriptStop has been called. The valid index values for receive messages within a script can be found in the
cmvspy.vs3cmb.h file that is produced by Vehicle Spy. Please see Vehicle Spy documentation.

 Example

 C/C++ Example:

 int iRetVal;

unsigned long lLastErrNum;

icsSpyMessage MsgMask, Msg;

//first read the existing message to get a baseline

iRetVal = icsneoScriptReadRxMessage(hObject, Receive_Msg_1, &MsgMask, &Msg);

if(iRetVal == 0)

{

 iRetVal = icsneoGetLastAPIError(hObject, &lLastErrNum);

 printf("\nFailed to read the receive message before writing it);

 printf("\nPress a key to continue");

72

}

Msg.ArbIDOrHeader = 0x030;

memset(Msg.Data, 0x03, 8);

iRetVal = icsneoScriptWriteRxMessage(hObject, Receive_Msg_1, &MsgMask, &Msg);

if(iRetVal == 0)

{

 printf("\nFailed to write the receive message.);

}

else

{

 printf("\nWrote the transmit message to the script");

}

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

73

http://www.intrepidcs.com

ScriptWriteTxMessage Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method is used to alter a transmit message defined within a script on a neoVI device.

 C/C++ Declare

 int _stdcall icsneoScriptWriteTxMessage(int hObject, unsigned int iIndex, icsSpyMessage

*pTxMessage);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iIndex
 [in] The index value of the transmit message to read

pTxMessage
 [in] This is the address of an instance of an allocated icsSpyMessage structure. The structure will be
used to change the specified transmit message.

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_INVALID_MSG_INDEX = 224
NEOVI_ERROR_DLL_SCRIPT_NO_SCRIPT_RUNNING = 226

Remarks

 The script containing the specified transmit message must have been successfully downloaded to the
neoVI using ScriptLoad. The script must also have been started using ScriptStart. This function will fail if
ScriptStop has been called. The valid index values for transmit messages within a script can be found in the
cmvspy.vs3cmb.h file that is produced by Vehicle Spy. Please see the Vehicle Spy documentation.

 Example

 C/C++ Example:

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

74

http://www.intrepidcs.com

ScriptReadISO15765 _2_TxMessage Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method is used to read the parameters for an ISO15765-2 long transmit message defined
within a script on a neoVI device.

 C/C++ Declare

 int _stdcall icsneoScriptReadISO15765_2_TxMessage(int hObject, unsigned int iIndex,

stCM_ISO157652_TxMessage *pTxMessage);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iIndex
 [in] The index value of the transmit message to read

 pTxMessage
 [out] An instance of an allocated stCM_ISO157652_TxMessageStructure structure. The structure will be
loaded with the requested transmit message.

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_INVALID_MSG_INDEX = 224

Remarks

 The script containing the specified transmit message must have been successfully downloaded to the
neoVI using LoadScript. The script must also have been started using ScriptStart. This function will fail if
ScriptStop has been called. The valid index values for transmit messages within a script can be found in the
cmvspy.vs3cmb.h file that is produced by Vehicle Spy. Please see Vehicle Spy documentation.

 Example

 C/C++ Example:

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

75

http://www.intrepidcs.com

ScriptWriteISO15765_2_TxMessage Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method is used to change the parameters for an ISO15765-2 long transmit message defined
within a script on a neoVI device.

 C/C++ Declare

 int _stdcall icsneoScriptWriteISO15765_2_TxMessage(int hObject, unsigned int iIndex,

stCM_ISO157652_TxMessage *pTxMessage);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 iIndex
 [in] The index value of the transmit message to read

pTxMessage
 [in] This is the address of an instance of an allocated stCM_ISO157652_TxMessageStructure structure.
The structure will be used to change the specified transmit message.

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be called to obtain the specific error.
The errors that can be generated by this function are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75
NEOVI_ERROR_DLL_SCRIPT_INVALID_MSG_INDEX = 224

Remarks

 The script containing the specified transmit message must have been successfully downloaded to the
neoVI using ScriptLoad. The script must also have been started using ScriptStart. This function will fail if
ScriptStop has been called. The valid index values for transmit messages within a script can be found in the
cmvspy.vs3cmb.h file that is produced by Vehicle Spy. Please see the Vehicle Spy documentation.

 Examples

 C/C++ Example:

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

76

http://www.intrepidcs.com

GetRTC Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method returns the value of the real-time clock on a connected neoVI device.

 C/C++ Declare

 int icsneoGetRTC(int hObject, icsSpyTime *pTime);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pTime
 [in] The address of a icsSpyTime structure. This structure is defined in the file icsSpyDataCommon.h

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be
called to obtain the specific error. The errors that can be generated by this function
are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

Remarks

 Example

 C/C++ Example:

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

77

http://www.intrepidcs.com

SetRTC Method - intrepidcs API
C/C++ declare - Parameters - Return Values - Remarks - C/C++ example

 This method sets the value of the real-time clock on a connected neoVI device.

 C/C++ Declare

 int icsneoSetRTC(int hObject, icsSpyTime *pTime);

Parameters

 hObject
 [in] Specifies the driver object created by OpenNeoDevice.

 pTime
 [in] The address of a icsSpyTime structure. This structure is defined in the file icsSpyDataCommon.h

Return Values

 1 if the function succeeded. 0 if it failed for any reason. GetLastAPIError must be
called to obtain the specific error. The errors that can be generated by this function
are:

 NEOVI_ERROR_DLL_NEOVI_NO_RESPONSE = 75

Remarks

 Examples

 C/C++ Example:

intrepidcs API Documentation - (C) Copyright 1997-2012 Intrepid Control Systems, Inc. (www.intrepidcs.com)

Last Updated : Tuesday, January 19, 2010

78

http://www.intrepidcs.com

	General Information
	Installation Instructions

	Release Notes
	intrepidcs Linux API Functions
	InitializeAPI Method
	ShutdownAPI Method
	FindNeoDevices Method
	OpenNeoDevice Method
	ClosePort Method
	GetMessages Method
	WaitForRxMessagesWithTimeOut Method
	TxMessages Method
	SetBitRate Method
	SetReflashDisplayCallbacks Method
	GetTimeStampForMsg Method
	FreeObject Method
	GetHWFirmwareInfo Method
	GetDLLFirmwareInfo Method
	GetStoredFirmwareInfo Method
	GetLastAPIError Method
	GetErrorInfo Method
	GetErrorInfoW Method
	GetErrorMessages Method
	EnableNetworkRXQueue Method
	GetVCAN3Settings Method
	SetVCAN3Settings Method
	GetFireSettings Method
	SetFireSettings Method
	GetDeviceParameters Method
	SetDeviceParameters Method
	ScriptStart Method
	ScriptStop Method
	ScriptLoad Method
	ScriptClear Method
	ScriptStartFBlock Method
	ScriptGetFBlockStatus Method
	ScriptStopFBlock Method
	ScriptGetScriptStatus Method
	ScriptReadAppSignal Method
	ScriptWriteAppSignal Method
	ScriptReadRxMessage Method
	ScriptReadTxMessage Method
	ScriptWriteRxMessage Method
	ScriptWriteTxMessage Method
	ScriptReadISO15765TxMessage Method
	ScriptWriteISO15765TxMessage Method
	GetRTC Method
	SetRTC Method

